60 research outputs found

    The Power of Linear Recurrent Neural Networks

    Full text link
    Recurrent neural networks are a powerful means to cope with time series. We show how a type of linearly activated recurrent neural networks, which we call predictive neural networks, can approximate any time-dependent function f(t) given by a number of function values. The approximation can effectively be learned by simply solving a linear equation system; no backpropagation or similar methods are needed. Furthermore, the network size can be reduced by taking only most relevant components. Thus, in contrast to others, our approach not only learns network weights but also the network architecture. The networks have interesting properties: They end up in ellipse trajectories in the long run and allow the prediction of further values and compact representations of functions. We demonstrate this by several experiments, among them multiple superimposed oscillators (MSO), robotic soccer, and predicting stock prices. Predictive neural networks outperform the previous state-of-the-art for the MSO task with a minimal number of units.Comment: 22 pages, 14 figures and tables, revised implementatio

    Automated Reasoning in Deontic Logic

    Full text link
    Deontic logic is a very well researched branch of mathematical logic and philosophy. Various kinds of deontic logics are discussed for different application domains like argumentation theory, legal reasoning, and acts in multi-agent systems. In this paper, we show how standard deontic logic can be stepwise transformed into description logic and DL- clauses, such that it can be processed by Hyper, a high performance theorem prover which uses a hypertableau calculus. Two use cases, one from multi-agent research and one from the development of normative system are investigated
    • …
    corecore